

BNL Microelectronics capabilities

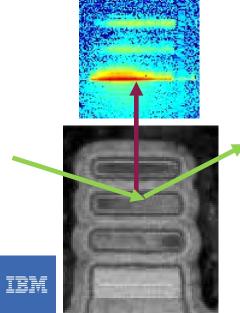
Contact: Paul Zschack Physical Sciences & Research Operations Division Director

pzschack@bnl.gov

Photon Solutions for Microelectronics

Measurement Needs

- Non-destructive, in-situ
- Profiling from surface to bulk tunability
- Nanoscale strain imaging
- Nanoscale 3D imaging
- Interface/defect
 characterizations
- In-situ failure analysis
- PPM dopant profiles


Depth Profile

• Work function mapping

National Synchrotron Light Source-II Capabilities fill measurement needs using the state-of-the-art capabilities

- Strain imagining: 10 nm (now), 5 nm at CDI (2026)
- 3D nanoscale imaging: ~8 nm
- Elemental mapping with PPM sensitivity
- Bandgap imaging
- Surface potential/work function mapping:~10 nm
- Suite of spectroscopic tools for probing electronic state, binding energy, and chemical states
- Scattering methods sensitive to ferroelectric, magnetic and correlated domains
- Photon Emission Electron Microscopy to characterize electronic work function.

National Synchrotron Light Source - II

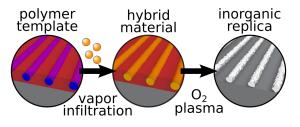
Strain imaging in nanosheets (Collaboration IBM & Albany Nanotech)

HXN X-ray Microscope for 10 nm imaging

https://www.bnl.gov/nsls2/

Not Export Controlled

Beyond CMOS: Next-Generation Materials and Integration


Material Needs

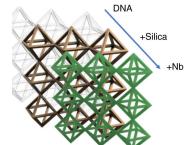
- Novel materials
 - Neuromorphic
- 2D control and integration
 - e.g. twistronics
- 3D integration
 - Self-assembly
 - Precision

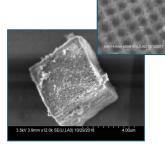
Center for Functional Nanomaterials Capabilities: 3D Fabrication

- 3D Directed Self-Assembly (3D-DSA)
 - DNA materials voxel assembly
 - Block copolymer (BCP) selfassembly
 - Vapor-phase infiltration synthesis

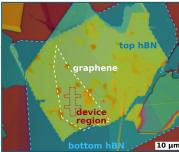
200 nm

3D integration by BCP 3D-DSA




Material nano-voxels: DNA frames with functional payloads Assembly of voxels in designed 3D architectures

3D array of Josephson junctions



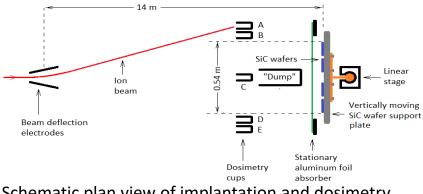
Not Export Controlled

QPress: Automated fabrication of 2D heterostructure & devices

• Al-aided 2D heterostructure fabrication and device integration

Stacked 2D heterostructure and devices https://www.bnl.gov/cfn/

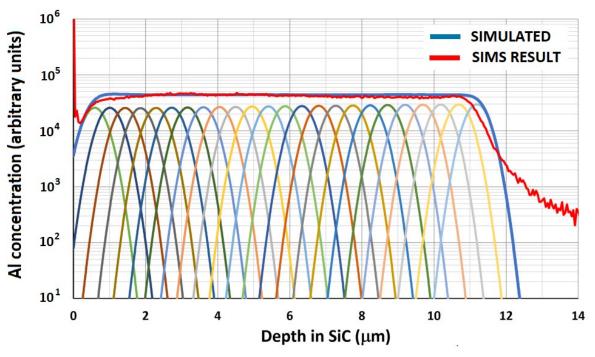
Ion implantation with Tandem accelerators


- electrostatic Tandem accelerators produce narrow transverse beams with narrow energy spread
- Tandems have served industrial and academic users for decades with existing infrastructure and expertise
- beams were also used for ion implantation to improve performance of SiC electronic devices
- a new heated waver implantation facility is designed, and would be available to all users
- microbeams can be developed for targeted irradiation of small areas

Novel high-energy ion implantation facility using a 15 MV Tandem Van de Graaff accelerator

P. Thieberger a,* , C. Carlson a , D. Steski a , R. Ghandi b , A. Bolotnikov b , D. Lilienfeld b , P. Losee b

^a Brookhaven National Laboratory, United States ^b GE Global Research, United States



Schematic plan view of implantation and dosimetry

Maximum energies and ranges of four typical beams

lon species	Maximum energy	Range in SiC
	(MeV)	(mm)
В	84	131
N	77	52
AI	91	20
Р	126	23

Secondary Ion Mass Spectroscopy (SIMSO results and simulated Al implantation profile in SiC with a 5.75 mm Al absorber using 24 Al beam energies ranging form 13.8 to 59.8 MeV.

Not Export Controlled