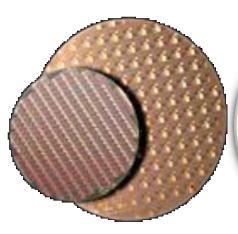
IBM Research | Microelectronics Research Laboratory

Lead by Dirk Pfeiffer (dirkp@us.ibm.com)

© 2022 IBM Corporation


IBM Research Microelectronics Research Laboratory

What is the MRL?

- A 200mm wafer-scale unit process development & advanced prototyping facility located in Yorktown
- 50K sf of clean room space,
 ~200 tools, dedicated staff
 (200 scientist and engineers)
- Rich history of semiconductor technology innovation (CMP, STI, HiK MG, technology scaling, Cu, SOI, FINFET, Nanowire, SiGe FIN....)
- Range of capability for advanced prototyping, Standard CMOS flow + tools & Packaging
- Flexibility and operational discipline: new materials while yielding testable arrays

200/300mm lab to fab transition

- Precompetitive development of new materials, devices, unit processes without 300mm process flow disruptions, collaboration with academia
- Transfer to 300mm via bridge tools (200/300mm capable), Unit process
 JDA with semiconductor vendors
- IBM commercially developed semiconductor knowhow also transferable to DoD

IBM Research Lab to Fab Model

Process transfer to manufacturing partner

development (EUV)

IBM NY Creates Albany Nanotech

200mm Si wafer scale process development (ebeam & optical lithography)

IBM Yorktown Microelectronics Research Laboratory

Early device/package prototyping; Small scale fabrication on Silicon (ebeam lithography); new materials;

Nanofabrication Almaden, Zurich

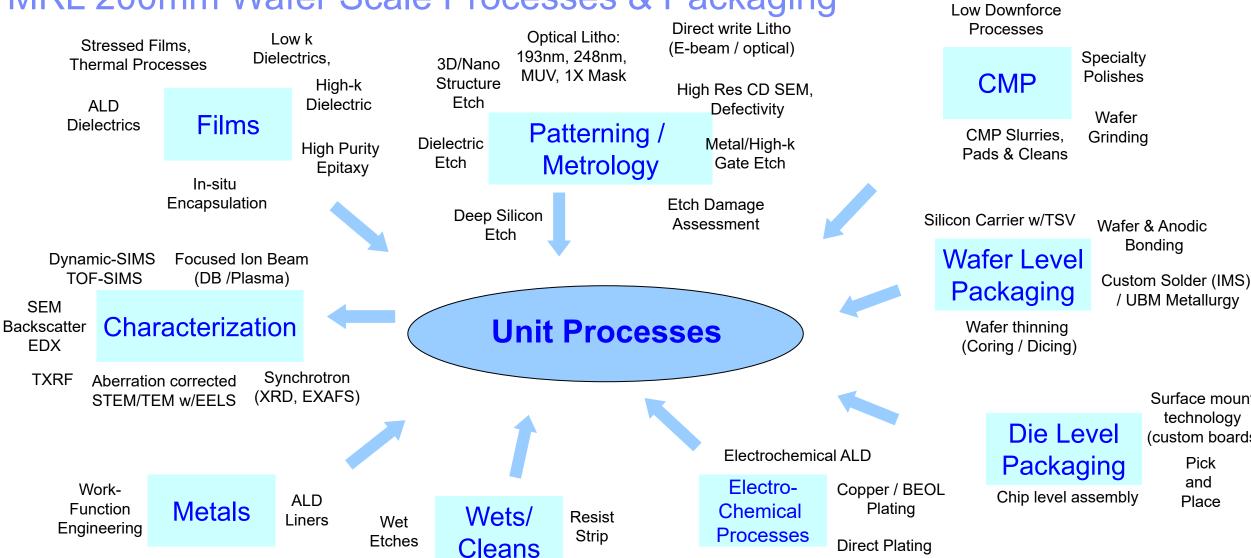
Magnetic and Phase

Change Materials

Silicide

Alloys

3



Bonding

MRL 200mm Wafer Scale Processes & Packaging

Advanced Surface

Preparation/Cleans

Contamination

Control

(no seed layer)

Electroless Plating

Selective Electroless

Metal Caps

Surface mount

technology

(custom boards)

Pick and

Place

MRL MEC Offerings

Advanced Packaging Development

- Wafer, Module, Card and System Level Packaging Development
- Solutions for Power Management, Cooling, Chiplets, 3D/2.xD, High Density Interconnect, Bonding, Compression Molding
- Integration of Silicon and non Silicon

Die and wafer level Packaging capability within the MRL:

- Dicing conventional, coring, beveling, notching, edge trim and stealth including 200/300mm wafer
- Bump Bonding various solders, as small as 40 μm pitch
- Wire Bonding auto, manual and ball (stud)
- Wafer Bonding glass to silicon and silicon to silicon adhesive bonds, bond debond
- Electroplating Processing and Development Ni, Cu, Au, Pd, Pt, Sn, In
- UBM Development conventional and for new solder material
- Lithography direct write, 0.5 μm resolution, planarizing high aspect ratio features
- Injection molded soldering, Unique TDV and TSV Etch Capability for HI Applications, Etch Process Solutions through thick BEOL

200mm wafer scale processing

- Unit process development of new devices and materials at 200mm wafer scale with standard CMOS tooling
- Process flows for integration of new devises and materials in BEOL on prefabricated foundry FEOL (90-180nm)
- Process modules for new FEOL/BEOL materials learning

MRL 200mm wafer scale processing capabilities:

- Optical lithography including 0.75NA 193nm, laser direct write and ebeam lithography for 200mm wafer scale device development
- Testable yielding arrays of analog devices integrated in BEOL fabricated on 90-180nm transistor arrays provided by foundry partner (split fab and wafer exchanges)
 - Devices include PCM, MRAM, RRAM and others
- FEOL and BEOL module based arrays for transistor level and interconnect learning of new materials and processes
- Unit process develop of new materials and processes including ALD, CVD, PVD, RIE, CMP, plating and other
- 200/300mm hybrid tooling for rapid transfer of process learning from 200 to 300mm